(%i1) Mathe Q1: Wachstum & Wachstumsprozesse
(%i2) Vergiftetes Wachstum
(%i3) (1)
(%i4) f(0) = 0.1 (Warum?)
(%i5) f(t) = 0.1 * %e^(0.25*t - 0.5 * c*t^2) und f(5) = 24
(%i6) -> 0.24 = 0.1 * %e^(0.25*5 - 0.5 * c * 25) -> 2.40 = %e^(0.25*5 - 0.5 * c * 25)
(%i7) log(2.40) = (0.25*5 - 12.5 * c) -> 12.5 * c =
(0.25*5 - log(2.40) ) -> c = (0.25*5 - log(2.40) ) / 12.5
(%i8) (0.25*5 - log(2.40) ) / 12.5;
(%o8) 0.02996250101168801
(%i9) ev(%,numer);
(%o9) 0.02996250101168801
(%i10) d. h. c = 0.02996 = 0.03
(%i11) f(t) := 0.1 * %e^(0.25 * t - 0.015*t*t);
0.25 t - 0.015 t t
(%o11) f(t) := 0.1 %e
(%i12) (2)
(%i13) _f_ : 0.1 * %e^(0.25 * t - 0.015*t*t);
2
0.25 t - 0.015 t
(%o13) 0.1 %e
(%i14) draw2d(explicit(_f_,t,0,30),title = Vergiftetes Wachstum,
xaxis = true,yaxis = true,grid = true)
(%i15) (3)
(%i16) maximale Anzahl = HP von f(t)
(%i17) diff(f(t),t);
2
0.25 t - 0.015 t
(%o17) 0.1 (0.25 - 0.03 t) %e
(%i18) diff(80 - 80 * %e^(-0.05*t),t);
- 0.05 t
(%o18) 4.0 %e
(%i19) d. h. 0.25 - 0.03 t = 0 -> t = 0.25 / 0.03 = 8.33334
(%i20) f(8.333333334);
(%o20) 0.2833936307694168
(%i21) HP(8.333334| 0.2834)
(%i22) (4) maximale Zunahme/maximale Abnahme = WST!
(%i23) diff(f(t),t,2);
2 2
2 0.25 t - 0.015 t 0.25 t - 0.015 t
(%o23) 0.1 (0.25 - 0.03 t) %e - 0.003 %e
(%i24) WST falls 325 - 150 * t + 9 * t^2 = 0
(%i25) solve(325 - 150 * t + 9 * t^2 = 0,t);
10 sqrt(3) - 25 25 + 10 sqrt(3)
(%o25) [t = - ---------------, t = ---------------]
3 3
(%i26) ev(%,numer);
(%o26) [t = 2.559830641437076, t = 14.10683602522959]
(%i27) max. Zunahme nach t = 2.56 Tagen, max. Abnahme nach t = 14.107 Tagen