(%i1) Mathe Q1: Wachstum & Wachstumsprozesse
(%i2) Exponentielles Wachstum
(%i3) (1)
(%i4) a = 100 000 = g(0)
(%i5) g(5) = 700 000 = 100 000 * %e^(5*k) <-> 7 = %e^(5*k)
(%i6) 7 = %e^(5*k) <-> 5*k = log(7) <-> k = log(7) / 5
(%i7) log(7) / 5;
log(7)
(%o7) ------
5
(%i8) ev(%,numer);
(%o8) 0.3891820298110626
(%i9) k = 0.389182 -> g(t) = 100 000 * %e^(0.389182*t)
(%i10) g(t) := 100000 * %e^(0.389182*t);
0.389182 t
(%o10) g(t) := 100000 %e
(%i11) g(5);
(%o11) 699999.8956612883
(%i12) (2)
(%i13) g(t) beschreibt die Anzahl der Keime in der Milch als Funktion der Zeit t
(%i14) (3)
(%i15) diff(g(t),t);
0.389182 t
(%o15) 38918.2 %e
(%i16) g'(t) beschreibt, wie schnell sich g(t) aendert
(%i17) (4)
(%i18) 1 000 000 = 100 000 * %e^(0.389182*t) <-> 10 = %e^(0.389182*t)
(%i19) 10 = %e^(0.389182*t) <-> 0.389182*t = log(10) <-> t = log(10)/0.389182
(%i20) log(10)/0.389182;
(%o20) 2.56949190866998 log(10)
(%i21) ev(%,numer);
(%o21) 5.916473765472314
(%i22) t = 5.916474 = 5.92 h, also nach knapp 6 Stunden
(%i23) (5)
(%i24) Ansatz: 2 = %e^(0.389182*t) <-> t = log(2)/0.389182
(%i25) log(2)/0.389182;
(%o25) 2.56949190866998 log(2)
(%i26) ev(%,numer);
(%o26) 1.781036071966189
(%i27) Also nach ca. 1.78 Stunden
(%i28) _f_ : 100000 * %e^(0.389182*t);
0.389182 t
(%o28) 100000 %e
(%i29) draw2d(explicit(_f_,t,0,7),
title = "Exponentielles Wachstum",xaxis = true,yaxis = true,grid = true)